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We theoretically investigate Fano factors arising in local spectroscopy of impurity resonances in graphene.
It is demonstrated that Fano line shapes can strongly differ from the antiresonances usually found on metal
surfaces. Graphene’s highly symmetric Fermi points make this effect particularly sensitive to the detailed
atomistic structure and orbital symmetries of the impurity. After a model discussion based on an Anderson
impurity coupled to an electron bath with linearly vanishing density of states, we present first-principles
calculations of Co adatoms on graphene. For Co above the center of a graphene hexagon, we find that the
two-dimensional E1 representation made of dxz ,dyz orbitals is likely responsible for the hybridization and
ultimately Kondo screening for cobalt on graphene. Anomalously large Fano q factors depending strongly on
the orbitals involved are obtained. For a resonant s-wave impurity, a similarly strong adsorption site depen-
dence of the q factor is demonstrated. These anomalies are striking examples of quantum-mechanical interfer-
ence related to the Berry phase inherent to the graphene band structure.
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I. INTRODUCTION

Scanning tunneling microscopy �STM� allows us to probe
the electronic properties of conducting materials with atomic
scale spatial resolution. This experimental technique is par-
ticularly well suited to study electronic correlation phenom-
ena. One of the most famous correlation phenomena is the
Kondo effect arising from a localized magnetic moment be-
ing screened by the conduction electrons.1 It results in a for-
mation of a sharp Abrikosov-Suhl resonance in local density
of states �LDOS� at the Fermi level below a characteristic
Kondo temperature TK. Today, the Kondo effect is well un-
derstood for impurities in bulk materials and simple model
systems. However, large interest in this phenomenon has
been revived recently since STM has been revealing the in-
tricacies of Kondo effect at metal surfaces, caused by d and
f adatoms.2–4 The rich electronic structure of three-
dimensional metals like Cu, in general, controls impurity ef-
fects at surfaces5–7 and the effects turned out to depend
strongly on atomistic details. This requires a realistic de-
scription of the magnetic impurity, e.g., taking into account
the detailed bonding geometry, to understand the electronic
spectra of these structures.

Graphene—a monolayer of carbon atoms arranged in a
honeycomb lattice—is the first truly two-dimensional
material8 and provides a two-dimensional electron gas with a
distinct and highly symmetric low-energy electronic struc-
ture: at two nonequivalent corners of the Brillouin zone, K
and K�, the linearly dispersing valence and conduction bands
touch forming a conical point with nontrivial Berry phase
�.9,10 Thus, electronic excitations in graphene resemble
massless Dirac fermions with the speed of light being re-
placed with the Fermi velocity vf�c /300. Therefore,

graphene provides a model system for understanding quan-
tum effects in reduced dimensions and in the presence of an
“ultrarelativistic” conduction-electron bath.

Theoretical studies have shown that even in undoped
graphene the Kondo effect can exist above a certain critical
coupling despite the linearly vanishing density of states,11–15

a situation very similar to magnetic impurities in the
pseudogap phase of high-Tc superconductors.11,12,16 More-
over, backgating8 as well as chemical doping17,18 allows one
to control the chemical potential in graphene and to tune
Kondo physics and electron tunneling in this way.

In this paper, we address how impurity resonances, in
general, and Kondo resonances, in particular, manifest in
STM experiments on graphene. It is shown why Fano reso-
nances in the STM spectra can depend unusually strongly on
the chemical potential, on the involved impurity orbitals, as
well as the real-space position of the impurity. To this end,
we first consider the single impurity Anderson model with
graphene providing the host electronic structure and compare
to a simple model of a usual metal surface. With this back-
ground, we turn to a more realistic ab initio based descrip-
tion of magnetic impurities on graphene and discuss the case
of Co adatoms as in the recent experiment by Manoharan et
al.19 By comparison to Co on Cu �111�, an extensively stud-
ied system,5–7 possessing also hexagonal symmetry of the
surface, we will demonstrate the importance of impurity-
induced resonances in graphene20 and the particular sensitiv-
ity of the q factor to orbital symmetries. Furthermore, we
analyze model s-wave impurities being bound to different
sites of the graphene lattice and show that a strong adsorp-
tion site dependence of Fano factors in STM experiments can
be expected there.
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II. MODEL FOR TUNNELING INTO IMPURITY
RESONANCES

The �-band the tight-binding Hamiltonian of graphene
reads as21

Ĥ0 = − t�
�i,j�

�ai
†bj + bj

†ai� , �1�

where ai and bi are the Fermi operators of electrons in the
carbon pz orbital of sublattice atoms A and B in the cell at Ri,
respectively. The sum includes all pairs of nearest-neighbor
carbon atoms and t�2.7 eV is the hopping parameter. With
the Fourier-transformed operators ak �bk�, defined by ai
=��B

�d2k /�B�eikRiak and bi analogously, the Hamiltonian
can be rewritten as

Ĥ0 = �
�B

d2k

�B
�k

†Hk�k, with ��k� = 	ak

bk

 . �2�

Hk is the k-dependent 2�2 matrix

Hk = � 0 ��k�
���k� 0

� , �3�

where ��k�=−t� j=1
3 eik�bj−b1�, with bj �j=1,2 ,3� being the

vectors connecting neighboring atoms22 and �B being the
area of the Brillouin zone. An impurity contributing a local-

ized orbital, Ĥimp=�imp��d�
†d�+Un↑n↓, with Fermi operator

d, energy �imp, and on-site Coulomb repulsion U, is consid-
ered. Its hybridization with the graphene bands is described

by V̂=�k,��k,�
† Vkdd�+H.c. This problem has been exten-

sively discussed for normal metals and is usually called the
“Anderson impurity model.”1

In this framework, the connection between a tip and a
sample in the STM experiment can be expressed by the
transfer Hamiltonian

M = �
�

�Mdtd�
† t� + H.c.� + �

k�

��k�
† Mktt� + H.c.� �4�

describing tunneling of electrons from and to the STM tip
with the tunneling matrix elements Mdt and Mkt and the
Fermi operators t� �t�

†� for electrons in the STM tip.
The Fano q factor in the STM dI /dV spectra can be un-

derstood in terms of this model by using the equation of
motion approach from Ref. 23. One finds

q =
A

B
�5�

with

A = Mdt + �
k

VdkMktP� 1

EF − �k
� , �6�

B = − ��
k

VdkMkt��EF − �k� , �7�

where P is the Cauchy principle value symbol.
To obtain qualitative insights we proceed by simplifying

these expressions in close analogy to Eqs. �2.7�–�2.10� of
Ref. 24: for each conduction-electron wave function �k�r�,

we rewrite the hopping matrix elements to the impurity and
to the tip according to

Mkt � M0�k
��Rt�, Vdk � V0�k

��Rd� ,

where Rt and Rd are the positions of the tip and the impurity,
respectively. The matrix elements M0 �V0� contain the depen-
dence on the symmetry of the atomic orbitals of the tip �im-
purity�. We further assume that the wave functions can be
factorized as �k�r�=	k�r�f�z�, where r= �r ,z� is split up
into a lateral part r and a vertical coordinate z. We consider
the case of the tip being directly above the Co impurity, i.e.,
Rt= �r ,zt� and Rd= �r ,zd�, which leads to

VdkMkt = V0
�M0�k

��Rt��k�Rd� = ��k�Rd��2MV �8�

with MV=V0
�M0f��zt� / f��zd� independent of k. Thus, Eqs. �6�

and �7� yield

A = Mdt + MV Re G�EF�, B = MV Im G�EF� �9�

with the local conduction-electron Green’s function G�E�
=�k���k�Rd��2 / �E−�k− i0+�� at the impurity site. As argued
in Ref. 7, this simple model has proved successful to de-
scribe Fano factors for CoCun clusters on Cu �111� and will
be used here to understand Fano resonances in graphene and
to show why they are different to metals like Cu.

III. ENERGY AND ORBITAL DEPENDENCE OF THE
ASYMMETRY FACTOR

Usually, the magnetic orbitals of the adatom are strongly
localized resulting in �Mdt�
 �Mkt� and, consequently,

q � − Re G�EF�/Im G�EF� . �10�

In a metal with bandwidth D and constant DOS in the vicin-
ity of the impurity, Im G���=−� /2D if −D���D, we ob-
tain q� 1

� ln��D+EF� / �D−EF���2EF /�D. Hence, �q��1 and
the Kondo effect manifests in STM on normal metals as
antiresonance close to EF as long as �Mdt�
 �Mkt�. This is
very different for graphene.

The graphene DOS is N0
g�E�= ��E� /D2���D− �E�� resulting

in G�E�= �E /D2�ln�E2 / �D2−E2��− i�N0
g�E� and

q �
2 sign�EF�

�
ln�EF

D
� . �11�

This result follows directly from the linearity of N0
g�E� and

the Kramers-Kronig relations. As D�6 eV �Ref. 25� and
usually EF0.5 eV, the q factor can be q�1 and the Kondo
effect may manifest in STM as resonance instead of an an-
tiresonance, even for �Mdt�
 �Mkt�. This is in contrast to a
normal metal, where predominant tunneling into the
conduction-electron states results in a Kondo antiresonance
in STM. Moreover, Eq. �11� demonstrates that the q factor in
graphene can be expected to depend strongly on the chemical
potential.

Any impurity being coupled to graphene leads to charac-
teristic resonances in the local density of states in the vicinity
of the impurity.20 Moreover, as the real part of the Green’s
function enters Eq. �10�, the q factor carries information
about high-energy features of the local electronic structure,
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which is in general beyond effective low-energy theories. To
understand the role of such contributions to the q factor, we
illustrate the situation of a realistic impurity by comparing
the experimentally important cases of Co on graphene and
Co on Cu �111�.

For a realistic description of these systems we performed
density-functional calculations within the generalized gradi-
ent approximation �GGA� �Ref. 26� on 6�6 graphene super-
cells containing one Co adatom as well as on Cu �111� slabs
containing five Cu layers and one Co adatom. The Vienna ab
initio simulation package �VASP� �Ref. 27� with the projector
augmented wave �PAW� �Refs. 28 and 29� basis sets has
been used for solving the resulting Kohn-Sham equations. In
this way we obtained relaxed structures for both systems. In
particular, we found that GGA predicts Co to sit above the
middle of a hexagon on graphene, with Co on top of carbon
and Co above a bridge site being 0.6 and 0.5 eV, respec-
tively, higher in energy. This prediction of Co above the
middle of a hexagon is in line with previous DFT
calculations.30,31 The following discussion will be based on
the fully relaxed structure minimum-energy structure of Co
above the middle of a hexagon as shown in Fig. 1.

To estimate the Fano q factors we extracted the orbital-
resolved Green’s functions at the impurity site using atomic
orbitals naturally included in the PAW basis sets: the projec-
tors �di ��nk� of orbitals �di� localized at the impurity atoms
onto the Bloch eigenstates of the Kohn-Sham problem ��nk�
are available when using PAW as implemented in the VASP

and these give the local Green’s functions according to

Gij��� = �
nk

�di��nk���nk�dj�
� + i� − �nk

. �12�

So, we employ here the same representation of localized or-
bitals as used within the local-density approximation �LDA�
plus Hubbard U �LDA+U� scheme implemented in the VASP

code itself or as discussed in the context of LDA�dynamical
mean field theory �LDA+DMFT� in Ref. 32.

The local Green’s functions at the impurity sites as de-
fined in Eq. �12� are 5�5 matrices, which can used to obtain
the hybridization function ���� of the impurity,

G−1��� = � + i� − �d − ���� , �13�

where �d is the static crystal field and a 5�5 matrix, in
general. Hence, ���� are also 5�5 matrices describing the
hybridization of five d electrons of Co. In the particular case
of Co above a graphene hexagon, the C6v symmetry ensures
that these matrices are diagonal and decompose into degen-
erate blocks transforming under C6v according to the two-
dimensional E1 and E2 representations as well as the one-
dimensional A1 representation. The E1 and E2 components of
the hybridization function are depicted in Fig. 1�a�. At ener-
gies close to the Fermi level of graphene all graphene states
are in the vicinity of the two Dirac points. These states trans-
form under C6v according to E1 and E2. Hence, the hybrid-
ization of the A1 impurity orbital to the graphene bands is
strongly suppressed. Moreover, the crystal-field splitting ap-
pears to be such that the E1 orbitals �dxz and dyz� are highest
in energy by approximately 0.5–1 eV as compared to the
other d orbitals. So, the E1 orbitals are expected to determine
the q factor in STM experiments probing the Kondo effect of
Co on graphene. Cu �111� is also a hexagonal surface and the
adsorption geometry of Co on Cu �111� is C3v symmetric.
The decomposition of the hybridization function of Co on Cu
�111� into E1, E2, and A1 orbitals is shown in Fig. 1�c�. In
contrast to graphene, these hybridization functions are only
weakly energy dependent in the vicinity of the Fermi level.

Moreover, for Co on graphene we have �Im �����

 �Re ����� in the vicinity of the Fermi level of the undoped
system, �=0. This is very different from the case of Cu,
where �Im ����� and �Re ����� are mainly on the same order.
Using
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FIG. 1. �Color online� �a� and �d� Hybridization functions �, and �b� and �e� asymmetry factors q for Co on graphene �upper panel� and
Co on Cu �111� �lower panel� as obtained from our first-principles calculations. The q factors have been calculated from the hybridization
functions using Eq. �15�. For the hybridization functions Re � is plotted as solid line, and Im � as dashed line. The energy E=0 corresponds
to the Fermi level of the undoped system. The hybridization of Co on graphene is strongly energy and orbital dependent. The adsorption
geometries of Co on graphene and Cu �111� are shown in �c� and �f�, respectively. For the Cu �111� slabs, only the uppermost Cu layer is
shown for clarity.
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���� = �
k

�Vdk�2

� + i� − �k
� �V0�2�

k

��k�Rd��2

� + i� − �k
, �14�

in combination with Eqs. �8� and �9� and �Mdt�
 �M�, we
arrive at

q�EF� � Re ��EF�/Im ��EF� . �15�

Within this approximation the projectors and eigenenergies
obtained from DFT allow for an ab initio prediction of q
factors. Figures 1�b� and 1�d� show the q factors predicted
for channels of different C6v /C3v symmetries as calculated
for Co on graphene and Cu, respectively, as functions of the
resonant energy E. The calculated q factors for Co on Cu
�111� are typically on the order of q1 without pronounced
energy dependence. This is in contrast to graphene, where
q�1 in a wide energy range and q is strongly energy depen-
dent. So, q is expected to be strongly sensitive to local
changes in the chemical potential of graphene, which can be
caused by gate voltages, chemical doping, or substrate ef-
fects. Apart from �q��1 for E→0, we find the q factor for
resonances with E1 and E2 symmetries displaying markedly
different and asymmetric energy dependences, which are ef-
fects well beyond a linearized dispersion analysis.

IV. SITE DEPENDENCE OF HYBRIDIZATION MATRIX
ELEMENTS

For Co on graphene, we saw that graphene’s Fermi sur-
face being made up of states transforming as E1 and E2 under
C6v leads to particular Co orbitals being decoupled from the
graphene bands. This special symmetry of graphene’s Fermi
surface makes the q factors seen in Kondo resonances in
scanning tunneling spectroscopy particularly dependent of
the precise atomic arrangement of the magnetic impurity.
Similar to the sensitivity of the Fano resonances to orbital
symmetries, the q factor can depend strongly on the adsorp-
tion site of the impurity. This can be illustrated by the site
dependence of the q factors for an s-wave Anderson impurity
sitting at three different positions: on top of C, on a bridge
site, and in the middle of a hexagon.

At each adsorption site, the spherically symmetric s-wave
impurity can be modeled by equal hopping matrix element V
to its nearest-neighbor sites. For such an Anderson impurity
on top of a carbon atom or at a bridge site, we obtain

Vk = �V,0�T, Vk = �V,V�T, �16�

respectively, by translating that nearest-neighbor hopping
into the matrix formalism of Eq. �3� and performing the Fou-
rier transformation. Combining this with Eq. �7� results in
B�O�EF� for EF→0. This situation corresponds to Eq. �11�
with q being enhanced as EF→0.

For the impurity in middle of the hexagon the Fourier-
transformed hopping reads

Vk = „���k�,��k�…T. �17�

As the dispersion does, this coupling vanishes linearly when
approaching the Brillouin-zone corners K and K�. As a con-
sequence, any possible Kondo resonance due to such an im-

purity will lead to q�1: Eq. �7� results in B�O�EF
2� for

EF→0 in this case and leads to an even stronger enhance-
ment of the q factor than for the impurity on top of carbon or
at a bridge site.

The origin of this effect can be understood in terms of the
C6v symmetry as discussed above or in terms of destructive
quantum interference in graphene lattice: for each state in the
vicinity of K �K�� the phase of the wave function at nearest-
neighbor sites to impurity winds the phase either clockwise
or counterclockwise depending on sublattice, as illustrated in
Fig. 2. The phase of the wave function of atoms in sublattice
A winds leading to ��k�→0 for k→K or k→K�. This can-
cellation is a direct result of the Berry phase associated with
the Dirac points in graphene: the vanishing of ��k� is due to
topological properties of the honeycomb lattice as was dis-
cussed in Ref. 33.

V. CONCLUSIONS

We have studied the Fano asymmetry factors arising in
scanning tunneling spectroscopy of impurity resonances in
graphene. We find a tendency of q factors being generally
enhanced as compared to usual metal surfaces. For the real-
istic d-electron case of Co we performed ab initio calcula-
tions addressing the Fano line shapes of Kondo resonances in
this system. The crystal field of graphene splits the Co d
orbitals into two doublets E1,2 and one singlet A1 of states.
Our calculations suggest that the E1 doublet states are re-
sponsible for the Kondo effect and for unusual Fano q fac-
tors seen in the experiments.19 A strong dependence of Fano
factors on the involved orbitals is found. For an s-wave im-
purity placed in the middle of a hexagon we have shown that
the same destructive interference that leads to the linearly
vanishing DOS is responsible for an anomalously enhanced
q factor. We thus conclude that nontrivial properties of the
Kondo effect in graphene is an inherent property of Dirac
materials with nodal spectrum. Quantum interference effects,

Vi

Vi

Vi

Vi

Vi

Vi ei2 /3π
1

e−i2 /3π

FIG. 2. �Color online� Model of an Anderson impurity in the
middle of the graphene hexagon. Electrons from neighboring can
hop onto the impurity by the hopping matrix elements V. For an
electron from the vicinity of the Brillouin-zone corner K phase dif-
ferences of its wave function at neighboring sites belonging to sub-
lattice A �atoms marked by small blue circles� are given. The sum of
these phase factors vanishes.
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like the Fano effect, are extremely sensitive to atomistic de-
tails such as symmetries of the involved orbitals or specific
impurity positions. Upon completion of this work we became
aware of recent works of Zhuang et al.,34 Uchoa et al.,35 and
Saha et al.36 that address related questions for the case of
s-wave magnetic impurities.
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